Lecture 3
Conditions and branches

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

CdM-8 flag semantics

* N —sign bit of the result. Used for signed comparison

e C—carry bit of the result. Used for unsigned comparison

e Z—result is zero. Used for signed, unsigned and bitwise comparison
* \V —signed overflow (sign loss). Can be used to catch errors

* Vis also needed for correct signed comparison

C and unsigned subtraction/comparison again

* Subtraction <> adding 2’complement
* When the result<0,Cis O

e 1-255 =1+0000 0001 =2

* When theresult >0, Cis 1

¢ 3-2=11+11111110=1+C

Full list of CAM-8 branch instructions

condition
- eq/z
ne/nz
hs/cs
lo/cc
mi

pl

Vs

ve

hi

1s

ge

1t

gt
le

test

Z

—-Z

C

-C

N

—-N

v

-V

CA-Z

-CVZ

(NAV) V (=NA-V)
(NA=V) V' (=NAV)
(mZANAV) V (—ZA-NA-V)
(ZVNA=V) V (=NAV)

interpretation

equal, equal to zero / Zero is set

not equal, not zero, Zero is clear

unsigned higher or same / Carry is set
unsigned lower / Carry is clear

negative (minus)

positive or zero (plus)

oVerflow is set

oVerflow is clear

unsigned higher

unsigned lower or same

greater than or equal, greater than or equal to zero
less than, less than zero

greater than, greater than zero

less than or equal, less than or equal to zero

Figure 5.4: Control conditions.

More about branches

* In typical assembler, branch is like goto statement.
* You must invent label names and jump to labels

. Ty1|_p|cal equivalent of
(condition) { then-block E else {else-block)

requires one comparison, two labels, one branch and one jump
* (unconditional branch)

Condition calc

b[!cond] S1
Then-block

BrS2

S1: Else-block

S2: ...

CdM-8 assembler has richer syntax

If

Calc condition

is cond
Then-block

Else
Else-block

Fi

Real example

if
tst rO
IS z
Idirl, 10
add r1l, rO
else
shla rO
fi

e Consult tome.pdf for syntax for complex conditions
* (it is not so elegant)

Loops

r2=r0*rl (assuming rl is non-negative)
clrr2

while
tstrl

stays gt
add r0, r2
decrl

wend

Post-condition loop

find a zero

|di rO, array-1
Initialise r0 to point to the cell before the first element of the array.
do

inc r0 # point rO to the next element
Id rO, rl # read the element into rl
tstrl # examine it

until z #if rlis O then exit, otherwise continue

Nesting of it’s and loops is possible

* You can use them like blocks in high-level languages

* You do not need to invent label names

* You do not need to worry about correct nesting

* Much harder to write spaghetti code (than with raw branches)

* This is why CdM-8 assembly is called Platform 3 %

e Actually, it is much simplier to implement than you probably think
* It is all described in tome.pdf

* Beware: in some exercises using structural statements is explicitly
prohibited

